stacked_memory

NVLink, Pascal and Stacked Memory: Feeding the Appetite for Big Data

For more recent info on NVLink, check out the post, “How NVLink Will Enable Faster, Easier Multi-GPU Computing”.

NVIDIA GPU accelerators have emerged in High-Performance Computing as an energy-efficient way to provide significant compute capability. The Green500 supercomputer list makes this clear: the top 10 supercomputers on the list feature NVIDIA GPUs. Today at the 2014 GPU Technology Conference, NVIDIA announced a new interconnect called NVLink which enables the next step in harnessing the full potential of the accelerator, and the Pascal GPU architecture with stacked memory, slated for 2016.

Stacked Memory

pascal_modulePascal will support stacked memory, a technology which enables multiple layers of DRAM components to be integrated vertically on the package along with the GPU. Stacked memory provides several times greater bandwidth, more than twice the capacity, and quadrupled energy efficiency, compared to current off-package GDDR5. Stacked memory lets us combine large, high-bandwidth memory in the same package with the GPU, allowing us to place the place the voltage regulators close to the chip for efficient power delivery. Stacked Memory, combined with a new Pascal module that is one-third the size of current PCIe boards, will enable us to build denser solutions than ever before.

Outpacing PCI Express

Today a typical system has one or more GPUs connected to a CPU using PCI Express. Continue reading