This series of blog posts aims to provide an intuitive and gentle introduction to deep learning that does not rely heavily on math or theoretical constructs. The first part in this series provided an overview over the field of deep learning, covering fundamental and core concepts.

I wrote this series in a glossary style so it can also be used as a reference for deep learning concepts.

## History

### A Short History of Deep Learning

The earliest deep-learning-like algorithms that had multiple layers of non-linear features can be traced back to Ivakhnenko and Lapa in 1965 (Figure 1), who used thin but deep models with polynomial activation functions which they analyzed with statistical methods. In each layer, they selected the best features through statistical methods and forwarded them to the next layer. They did not use backpropagation to train their network end-to-end but used layer-by-layer least squares fitting where previous layers were independently fitted from later layers.

The earliest convolutional networks were used by Fukushima in 1979. Fukushima’s networks had multiple convolutional and pooling layers similar to modern networks, but the network was trained by using a reinforcement scheme where a trail of strong activation in multiple layers was increased over time. Additionally, one would assign important features of each image by hand by increasing the weight on certain connections.

Backpropagation of errors to train deep models was lacking at this point. Backpropagation was derived already in the early 1960s but in an inefficient and incomplete form. The modern form was derived first by Linnainmaa in his 1970 masters thesis that included FORTRAN code for backpropagation but did not mention its application to neural networks. Even at this point, backpropagation was relatively unknown and very few documented applications of backpropagation existed the early 1980s (e.g. Werbos in 1982). Rumelhart, Hinton, and Williams showed in 1985 that backpropagation in neural networks could yield interesting distributed representations. At this time, this was an important result in cognitive psychology where the question was whether human cognition can be thought of as relying on distributed representations (connectionism) or symbolic logic (computationalism).

The first true, practical application of backpropagation came about through the work of LeCun in 1989 at Bell Labs. He used convolutional networks in combination with backpropagation to classify handwritten digits (MNIST) and this system was later used to read large numbers of handwritten checks in the United States. The video above shows Yann LeCun demonstrating digit classification using the “LeNet” network in 1993.